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The structure of a periodic object, such as a crystal, may be described by an

infinite series of Fourier coefficients and phases. In associating this with

scattering theory appropriate to any radiation, a classic problem arises, namely,

the determination of phases from the resulting discrete diffraction pattern. The

solution to this phase problem is presented in this paper in which the first direct

measurement of structural phase by inspection of convergent-beam electron

diffraction patterns is described.

1. Introduction

The phase problem refers to the absence of phase information

in the intensity deriving from a diffraction experiment within

the single-scattering approximation. This is summarized in the

following equations (Lipson & Cochran, 1966):

Ig ¼ VgV�g with Vg ¼ jVgj expði�gÞ ð1Þ

and

P(u) ¼
P

g

Ig cosð2�g � uÞ ¼ ’ðrÞ � ’ð�rÞ; ð2Þ

where Ig is the intensity for the reflection with the reciprocal-

lattice vector g, Vg is the corresponding structure amplitude

with a phase �g. PðuÞ is the Patterson function of the crystal

structure expressed as a sum of the scattered intensities for an

atomic displacement with vector u, or a self-convolution of the

crystal potential, ’ðrÞ [nomenclatures for different radiations

are compared in Dawson et al. (1974)].

A solution is sought for the crystal potential, ’ðrÞ, however,

’ðrÞ is not uniquely defined by the integral equation for PðuÞ.

For weakly interacting radiation, such as neutrons and

X-rays, the single-scattering approximation has useful ranges

of validity and hence the phase problem remains. This is

conventionally circumvented using Patterson, heavy-atom or

direct methods, which all assume the single-scattering

approximation holds. In addition, multiple-scattering effects

have been employed in X-ray diffraction to determine three-

phase invariants, though not amplitudes (for example, Post,

1979; Weckert & Hummer, 1997).

For fast electrons, the interaction constant is approximately

5000 times stronger and the wavelength much shorter, so that

the single-scattering approximation no longer holds. This

means that phase information is contained in the intensity

distribution. However, in general, it is not possible to extract

this information because of the complexity of the scattering

equations. In other words, an analytical inversion of the

equations has not yet been found. However, if the crystal is

centrosymmetric [a fact that can be determined unequivocally

by convergent-beam electron diffraction (CBED) (Goodman

& Lehmpfuhl, 1968; Goodman, 2001)] and, furthermore, if it is

oriented such that the electrons are only scattered into three

directions, then the equations are much simpler and phase

information can be extracted. By exploiting the symmetries of

the scattering equations (Moodie et al., 1996) for this three-

beam condition, it becomes possible to invert these equations

to give

jVgj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð�3 � �2Þð�1 � �2 þ �3Þ

�2

r
; ð3Þ

jVhj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3ð�3 � �2Þ

�2

r
, ð4Þ

jVg�hj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�3ð�1 � �2 þ �3Þ

�2

r
, ð5Þ

and the sign of the three-phase invariant is given by the sign of

�3, where

�3 ¼
�VhVg�h

Vg

: ð6Þ

Here Vg, Vh and Vg�h are the triplet of structure amplitudes

relevant to the scattering geometry and �1, �2 and �3 are

distances in the three-beam electron diffraction pattern (� is

the interaction constant for electrons).

These equations are a consequence of invoking the discrete

symmetries of the cubic equation and the continuous

symmetries of the differential equation describing three-beam

scattering.

This inversion depends upon the measurement of

distances, �1, �2 and �3, to features in the diffraction

pattern, not on absolute intensities. These features are



defined by five loci within the diffraction patterns

along which the intensity distribution has the generic

form

I /
� sin2 � t

�2
; ð7Þ

often referred to as the two-beam form.

These loci are positioned uniquely in each of the three

beams and have specific orientations, which are known a priori

from the diffraction geometry, as per Fig. 1.

The distances, �1, �2 and �3, required for the inversion

[equations (3)–(5)] correspond to the following two features

(see Fig. 1)

1. The centre of the centrosymmetric intensity distribution

along loci G andH gives �3. The centre of the centrosymmetric

intensity distribution along locus C gives ��3.

2. The intersection of the two loci in either diffracted beam

gives ð�1;�2Þ, known as the Gjønnes–Høier or G–H point

(Moodie et al., 1996; Gjønnes & Høier, 1971).

In particular, the sign of the three-phase invariant is given by

the sign of �3, enabling phase to be identified directly from this

point.

The three structure amplitudes can be measured twice in a

single pattern, once from the loci in the disc g and once from

the loci in disc h, and their phase invariant can be measured

five times (i.e. once from each of the five loci). This enables

multiple checks of the measurements from a single pattern.

This is the theoretical result.

2. Experiment

This paper demonstrates, for the first time, the application of

this result to experimental data. Furthermore, it shows that it

is eminently practical to apply this routinely to the determi-

nation of structure amplitudes and their phases directly from

the measurement of distances as opposed to iterative matching

of absolute intensities (Goodman & Lehmpfuhl, 1967).

Specifically, it represents a direct experimental inversion of

diffracted intensities to obtain the crystal structure, without

making any assumptions. This establishes a point of principle,

that structural phase can be measured directly from experi-

mental intensity distributions. Furthermore, it delivers a new

experimental method for the determination of structure

amplitudes and phases that makes use of the symmetries in the

diffracted intensities and does not require knowledge of their

absolute value. In particular, it is found that the sign of the

phase can easily be determined, in many cases by inspection,

providing an experimental method for the direct measurement

of phase from intensity distribution and a solution to the phase

problem.

It is emphasized that this approach is distinct from the well

known iterative matching of computed and experimental

intensity distributions, which was first introduced in CBED by

Goodman & Lehmpfuhl (1967) and has been applied exten-

sively by many workers, including the matching of pattern

intensities in three-beam orientations [for example, Zuo et al.

(1989)].

�-Al2O3 was chosen to establish both of the above points.

[001] and [100] oriented wedges of 99.999% purity �-Al2O3

were tripod polished to achieve wedge angles of 1.5� and
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Figure 1
A schematic diagram of a three-beam CBED pattern. There are five loci (marked) that have centrosymmetric intensity distributions. Three of these,
marked C, lie perpendicular to the coupling vector g� h and have the same position in each disc. The other two loci are marked G andH.H lies in disc h
and is parallel to the locus of the Bragg condition in disc g. G lies in disc g and is parallel to the locus of the Bragg condition in disc h. The point of
intersection of the two loci in either disc determines the distances �1 and �2. The centre of symmetry of any of the five loci determines the distance �3.
These distances are measured in terms of the oblique coordinate axes of the excitation errors, �g and �h (see detailed view of disc g). These distances are
used in equations (3)–(5) to give the magnitudes of the structure amplitudes jVgj, jVhj and jVg�hj. The sign of �3 alone is the sign of the three-phase
invariant, VhVg�h=Vg [as in equation (6)]. This process can be repeated in disc h, with the labels g and h interchanged.
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Figure 2
An experimental measurement of structural phase and amplitude. Three experimental thickness-difference three-beam CBED patterns from �-Al2O3

(R�33c) taken at 200 kV are shown on the left. Patterns a, b and c are generated by permuting the same triplet of structure amplitudes about the [1, 1,�2]
zone axis. An expanded view of the disc g ¼ ð0; 4; 2Þ in permutation a is shown top right (with contrast enhanced to show relevant features). The
centrosymmetric loci are marked G (parallel to �h ¼ 0 ) and C (perpendicular to g� h) and their intensity distributions are given at lower right. A
magnified view of the boxed region in disc g is given at lower centre. The intersection of G and C is the Gjønnes–Høier (G–H) point and has the
coordinates ð�1;�2Þ=2� whilst the centre of symmetry of the intensity distribution along G is marked X and has the coordinates ð�3;�hÞ=2�. From these
measured distances, the magnitudes of the structure amplitudes (shown) are determined using no more than a pocket calculator. The phase is determined
by inspection. In this case, X lies on the positive side of �g in disc g and hence the sign of the three-phase invariant is positive.



examined in a Philips CM20 electron microscope with an LaB6

filament at 200 and 120 kV. An advantage of CBED is that the

crossover of the electron probe can routinely be made very

small [<50 Å (LaB6 source), <10 Å (FEG source) or <2 Å

(aberration-corrected FEG)] so that small specimen volumes

can be sampled. This ensures that the specimen volume

generating the pattern is both perfect and effectively parallel-

sided. Three-beam CBED patterns were collected near eight

different zone axes and recorded on image plates.

To minimize the contribution to the intensity distribution

that has resulted from inelastic scattering, including phonon

scattering and Borrmann-like effects (Goodman, 1973), two

patterns, taken from regions with slightly different thicknesses,

were subtracted to give a thickness difference pattern

(Nakashima, 2007). This approach is possible because the

inversion depends only on the symmetry of the intensity

distribution, not on the absolute intensities.

As an example, Fig. 2 shows three three-beam CBED

patterns taken near one of the eight zone axes. Each pattern is

a permutation of the same triplet of structure amplitudes

(V0;3;0, V3;1;2 and V0;4;2) and corresponds to a slightly different

incident-beam orientation that satisfies the Bragg condition

for different pairs of the triplet.

3. Results

The unique centrosymmetric intensity profiles were identified

in each of the three patterns. The centre of these profiles and

their intersection then established �1, �2 and �3. These

distances were measured independently in each of the

diffracted beams and in each of the three patterns. This

resulted in six independent measurements of the magnitude of

each of the structure amplitudes (jV0;3;0j, jV3;1;2j and jV0;4;2j),

i.e. once each from disc g and disc h, for each of the three

permutations, a, b and c (see Fig. 2). In this way, the influence

of the n-beam perturbations of the three-beam approximation

can be estimated (see Table 1). 15 independent measurements,

5 per pattern, can be made of the three-phase invariant. In

particular, with experience, the three-phase invariant can be

determined by casual inspection of the pattern, by identifying

the direction of the deflection of the intensity oscillations.

The results of these measurements are given in Table 1. It

can be seen that the three-phase invariant was always deter-

mined correctly. Furthermore, it is noted that, in all cases, it

was found that the sign of the three-phase invariant could

be determined by inspection. In addition, some individual

amplitudes were measured to within 5% of previous

measurements (Maslen et al., 1993; Streltsov et al., 2003). This

result is typical of those found in the other zone axes, which

will be reported elsewhere.

4. Conclusions

This demonstrates, for the first time, that structural phase in

any centrosymmetric crystal can indeed be measured directly

from an experimental intensity distribution. Furthermore,

amplitudes can be measured, at the same time, directly from

distances in this intensity distribution with sufficient accuracy

as to be suitable for structure determination.
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Table 1
Experimental results from the triplet of three-beam patterns in Fig. 2.

Structure amplitudes (V)

Location of
measurements† jV0;3;0j jV3;1;2j jV0;4;2j

Sign of 3-phase
invariant

Permutation a, beam g 4.52 0.92 1.24 +
Permutation a, beam h 5.32 1.62 2.07 +
Permutation b, beam g 5.21 1.61 2.12 +
Permutation b, beam h 5.56 1.52 1.82 +
Permutation c, beam g 4.90 1.32 1.92 +
Permutation c, beam h 5.75 0.79 1.08 +

Known value‡ 4.85 0.95 1.19 +

† See Fig. 2 for location of measurements. ‡ Previously measured values from Maslen
et al. (1993) and Streltsov et al. (2003).


